Christopher Kent Mineman - Didattica in rete

Integrali

...

Integrali indefiniti
$\displaystyle \int$ x 2   d x ,   $\displaystyle \int$ cos   x   d x ,   $\displaystyle \int$ 3 x 2 - 2 sin x d x  $\displaystyle \int$ x 2   x   d x
$\displaystyle \int$ 4 x 3 - 3 x 2 + 1   d x ,    $\displaystyle \int$ 3 sin   x - 2 cos   x   d x ,   $\displaystyle \int$ 2 e x   d x ,    $\displaystyle \int$$\displaystyle {\frac{2 dx}{x}}$
$\displaystyle \int_{0}^{1}$ x 2 + x   d x ,   $\displaystyle \int_{0}^{\pi}$ 2 sin   x - cos   x   d x ,   $\displaystyle \int_{-1}^{1}$ 3 e x - x   d x

 

$\displaystyle \int$ cos(2 x + 3)   d x ,   $\displaystyle \int$ e 3x - 4   d x ,   $\displaystyle \int$$\displaystyle {\frac{dx}{2+3x}}$,   ;$\displaystyle \int$$\displaystyle {\frac{dx}{4 + 9x^2}}$
$\displaystyle \int$$\displaystyle {\frac{dx}{5-3x}}$,   $\displaystyle \int$$\displaystyle {\frac{dx}{\sqrt{4 - 9x^2}}}$,   $\displaystyle \int$$\displaystyle {\frac{dx}{\cos^2 2x}}$,   $\displaystyle \int$$\displaystyle {\frac{dx}{e^x}}$
Integrali definiti
$\displaystyle \int_{0}^{1}$ x 3   d x ,   $\displaystyle \int_{-2}^{3}$ ( x 2 - 3 x + 1)   d x ,   $\displaystyle \int_{0}^{\pi}$ sin(2 x)   d x ,   $\displaystyle \int_{2}^{4}$$\displaystyle {\frac{dx}{x}}$
$\displaystyle \int_{0}^{1}$$\displaystyle {\frac{dx}{1+x^2}}$,   $\displaystyle \int_{0}^{1/2}$$\displaystyle {\frac{dx}{\sqrt{1-x^2}}}$,   $\displaystyle \int_{1}^{2}$ dx e x/2 ,   $\displaystyle \int_{1}^{4}$$\displaystyle {\frac{dx}{2x+3}}$

 

$\displaystyle \int_{0}^{\infty}$ e -2x   d x ,   $\displaystyle \int_{0}^{\infty}$$\displaystyle {\frac{dx}{1+4x^2}}$,   $\displaystyle \int_{1}^{x}$$\displaystyle {\frac{dt}{t}}$,      ( x > 0)
$\displaystyle \int_{-a}^{a}$ (3 x 7 - 4 x 5) 15   d x ,   $\displaystyle \int_{0}^{\pi/4}$ sec 2 x   d x ,   $\displaystyle \int_{1}^{e^{x^2}}$$\displaystyle {\frac{du}{u}}$.