| sen(α + β) | senα cosβ+cosα senβ |
| cos(α +β) | cosα cosβ-senα senβ |
| tang(α + β) |
tang α + tang β 1-tangα tang β |
| sen(α - β) | senα cos β-cosα senβ |
| cos(α - β) | cosα cosβ +senα senβ |
| tang(α - β) |
tang α - tang β 1+ tangα tang β |
| sen(2α) | 2 senα cos α |
| cos(2α) | cos2α-sen2β= 2 cos2 α-1= 1-2 sen2 α |
| tang(2α) |
2tang α 1-tang2α |
sin x/2 = ±
[(1-cosx) / 2]
cos x/2= ±
[(1+cosx) / 2]
| tan x/2 = | sin x
1+cos x | = | 1-cos x
sen x |
poniamo: tang X/2 = t
| sen X= | 2 t
1+t2 |
cos X= | 1-t2
1+t2 |
tan X= | 2 t
1-t2 |